BRIDGE Project: Barrier Reduction in Insulin Delivery for Greater Equity

Samantha Goldklang ARNP, November 2024

About our Clinic

Patient Information

~2400 patients with type 1 diabetes ~375 new-onsets per year

Language of Care

English: 93% Spanish: 3.5% Somali: 1% Russian: 0.06% Amharic: 0.04%

<u>Staff</u>

21 Physicians
12 Advanced Practice Providers
20 Nurses
8 Dieticians
2 Social Workers
4 Medical Assistants
2 Certified Nursing Assistants
1 Clinical Psychologist

Locations

In-Person Clinics

- Provide care to patients from Washington, Alaska, Idaho and Montana
- Telehealth offered to patients living anywhere in WA, MT or AK

Background

- The use of insulin pumps for management of type 1 diabetes (T1D) in youth is associated with improvement in clinical outcomes such as hemoglobin A1c, time in range, and hypoglycemia.
- However, there are significant inequities in diabetes technology use by language of care.

SMART AIMs

- Increase insulin pump use in pediatric patients with type 1 diabetes at Seattle Children's Hospital from 53% to 70% by January 2025.
- Increase insulin pump use in patients with language of care other than English (LOE) from 21% to 50% by January 2025.

Where we started:

Process Map for youth with Type 1 Diabetes to start an Insulin Pump

Opportunities for improvement:

- 1. Discussion of diabetes technology: No standard pathway for the timing of the conversation. Typically occurred 4 + months after diagnosis.
- 2. Pump 101 class: Only offered in English. Many barriers including transportation, RN staffing, room availability, longer waits for youth and families with LOE, and written materials only available in English.

Key Driver Diagram

Secondary Drivers

Timeline of interventions

Seattle Children's

Timeline of interventions

Seattle Children's

Intervention #1: Pump 101 Class offered in LOE

PDSA 1: February 2023: Pump 101 class offered in LOE- youth wait to be cohorted by language

PDSA 2: May 2023: Monthly scheduled Spanish class - youth with other LOE continue to be cohorted

PDSA 3: January 2024: Pump education provided at scheduled clinic visit for patients with LOE who have been waiting to be cohorted

Timeline of interventions

Seattle Children's

Timeline of interventions

Seattle Children's

Intervention #2

Standard post pump start provider visit

Aim: to have a touchpoint 2-3 weeks following pump initiation to help adjust pump settings and troubleshoot issues for long term success on pump therapy

June 2023: Implemented via telemedicine with one APP who saw youth with diabetes 2-3 weeks following initiation of pump

Seattle Children's

September 2023: Expanded to all providers to try to keep continuity of care

Timeline of interventions

Seattle Children's

Timeline of interventions

Seattle Children's[°]

Intervention #3 Revised insulin pump start process

Low health literacy pump comparison handout to be given to all patients at track 1b visit

1					
	Beta bionics	Medtronic	Omnipod 5	Tandem T:Slim	Tandem Mobi
	ilet	780g		X2	
Adjusts background insulin based	+	+	+	+	•
Carb counting		Forgiveness for		Forgiveness for	Forgiveness for
carb counting	Meal announcements only	guesstimates	+	guesstimates	guesstimates
Auto corrections given by pump	-	-	0	•	
corrections can be given by user	0	4	•	•	
Can bolus from iPhone and some Android models	0	0	Some Android models	Both	Both
Tubeless	0	0	+	0	Tubling but can wear on body
Frequency of site changes	2-3 days	2-3 days OR 7 day infusion set available	2-3 days	2-3 days	2-3 days
Insulin capacity	180 units	300 units	200 units	300 units	200 units
CGM compatibility	Dexcom G6 Dexcom G7	Medtronic Guardian	Dexcom G6	Dexcom G6 Dexcom G7 Freestyle Libre 2 plus	Dexcom G6 Dexcom G7 Freestyle Libre 2 plus

Adapted from Cornell University Pediatric Endocrinology (presented at TIDX 2023)

Results Study Characteristics

- 165 youth with T1DM and LOE
- Mean age 12.4 (4.2 SD) years
- Mean A1c 10.0 (2.5 SD) %
- Most common LOE
 - Spanish: 53.9%
 - Somali: 10.9%
 - Russian: 6.7%

- Seattle Children's
- Baseline rate of pump use: 19% (February 2022)

Median Insulin Pump use in LOE as of June 2024

Median Insulin Pump use in all youth with T1D as of June 2024

Conclusion

- Implementation of the BRIDGE project doubled insulin pump utilization in youth with T1D with LOE over a 2-year period

- Further interventions have been implemented and are ongoing

Seattle Children's®

HOSPITAL • RESEARCH • FOUNDATION

Hope. Care. Cure.

Median pump use in patients with primary LOC other than English as of August 2024

November 11, 2024

Reducing Disparities in Continuous Glucose Monitor Adoption and Use Among Children and Adolescents with Type 1 Diabetes

Ashley Garrity, MPH, Jacqueline Fisher, MD, Inas Thomas, MD & Joyce Lee, MD, MPH

U-M Pediatric Diabetes C.S. Mott Children's Hospital, University of Michigan

Multidisciplinary Team	Patient Volume & Demographics	Contacts
 12 endocrinologists 3 fellows 2.0 dietitians 5.6 RNs (4.6 w/CDCES) 	 Main clinic at academic medical center + 1 satellite clinic 100-150 new onsets annually ~1300 established T1D patients 	Site PI Joyce Lee, MD, MPH joyclee@med.umich.edu
2.0 social workers1.0 psychologist	 30% publicly insured 	Site Coordinator Ashley Garrity, MPH <u>ashleyna@med.umich.ed</u> u

Baseline Data (February 2022)

- Proportion of all patients with T1D who have a CGM: 85%
 - Non-Hispanic White Patients with T1D who have a CGM: 87%
 - Non-White Patients with T1D who have a CGM: 75%

SMART Aims

To:

Increase the proportion of all patients with T1D who have a CGM by 5% (goal: 90%)
 Increase the proportion of all patients with T1D who use CGM ≥70% of the time
 Close the gap in CGM adoption and use between White and non-White patients with
 T1D by December 31, 2023.

U-M Peds Diabetes Fishbone Diagram (Cause & Effect Diagram)

U-M Pediatric Diabetes CGM <u>Discussion</u> Process

= pain point = current / planned intervention

U-M Pediatric Diabetes CGM Initiation/Use Process

= pain point

PDSA #1: Patient Instruction Handouts

- Plan: Print out CGM instruction form and DME phone numbers and give to patients who order a new CGM.
- <u>Do</u>: Dr. Fisher to test during March-June 2022 clinics.
- <u>Study</u>: Handouts were given to two patients who ordered CGM, but neither called DME to confirm shipment; one patient has since no-showed to clinic.
- <u>Act</u>: Adopt; Consider scaling by adding handouts to the New Onset Guide (vs. individual POC delivery).

Continuous Glucose Monitor (CGM) Process: A Guide for Patients & Families

This guide provides an overview of the steps involved in getting a continuous glucose monitor (CGM). Please contact your diabetes care team with any questions or concerns throughout the process.

- 1. Research and learn about CGM devices that are available.
 - Check out our <u>Comparing Diabetes Devices</u> handout (CGMs are on page 2)
 - You may also want to contact your insurance to see which devices are covered
- **2.** Once you've decided on a device, let your diabetes educator or endocrinologist know which device you would like ordered.
 - <u>Please note</u>: Some insurances, particularly Medicaid plans, require a clinic visit and updated labs within the past 90 days and a full 30 days of blood sugars, testing 4 or more times a day.
- 3. If you have not heard from your pharmacy or durable medical equipment (DME) provider after

PDSA #2: In-Clinic Support for CGM Initiation

- Plan: 1:1 time with diabetes educator at clinic visit to provide support in CGM placement, onboarding, etc.
- <u>Do</u>: Dr. Lee selected one patient (with many significant barriers) and asked them to bring CGM equipment to visit so CDCES could help with insertion and placement.
- **<u>Study</u>**: Patient forgot to bring equipment.
- <u>Act</u>: Abandon.

PDSA #3: Flowsheet Revisions

- Plan: Using Lurie Children's flowsheet as an example, revise flowsheet to standardize discussions about CGM, capture CGM adoption and use at point-of-care, and address barriers.
- <u>Do</u>: QI Team to collaboratively discuss and decide on flowsheet items (Nov 2022); Joyce to build (Dec 2022 Jan 2023).
- <u>Study</u>: Updated flowsheet items went live 2/8/2023; Revised items allow use to better understand which patients do/do not have CGM and which patients are/are not using CGM ≥70% of them, plus collecting information about barriers helps us know how we might best intervene.

Top barriers: Resistance to wearing device, insurance coverage, and technology issues

• <u>Act</u>: Adopt.

Does the individual have or own a CGM? This does not imply that they are using it, just that they have the equipment or the supplies for it. (*Carries Forward but please review at each visit and update as appropriate.)

Select all relevant barriers for why the patient does not have a CGM or was not using CGM in the last 10-14 days. Skip the question if the pt was using CGM for the last 10-14 days.

Select if the patient used CGM 10-14 days, 0-9 days, or 0 days in the last 14 days (per download).

Pediatric Endocr	inology						
🖁 Responsible 📩 Crea	te <u>N</u> ote					Show La	ast Filed Value 🗹 Show /
Self-management	behaviors						
Does Patient Have a <u>Dexcom G6</u> 44 taken 3	CGM? days ago						
Does Not Have CGM	Dexcom G6	Dexcom G7	Medtronic Guardian Sensor 3	Medtronic Enlite	Freestyle Libre	Freestyle Libre 2	Freestyle Libre 3
Other							

If Not Using CGM 10-14 days what are the Barriers? (Select all that apply)
Insurance coverage ◀◀ taken 4 days ago
Wants CGM Break Cost Insurance coverage Distrust Skin/adhesion issues Alarm fatigue Self-image
Resistance to wearables Refill delay Lack of education Other

CGM Use in the last 14 days CGM Use 1-9 days 44 taken 4 days ago CGM Use 10-14 days CGM Use 1-9 days None 0 days V

PDSA #4: Change Data Downloads to Ensure BG Logs on File for CGM Orders

- Plan: At intake, if patient is only using a glucometer, MAs will download 30 days of data (instead of 14) to ensure adequate BG logs are on file if patient opts to proceed with CGM order at visit.
- **Do:** MAs to test with next 5 patients using only glucometer, beginning 4/6/2023.
- <u>Study</u>: MAs successfully switched from downloading 14 days of meter day to 30 days; First patient ordered CGM at same visit (previously used Dexcom but discontinued due to discomforted and opted to try Libre).

Michigan Medicaid revised CGM policy (effective 6/1/2023), no longer requiring BG log documentation for CGM order approval (team was involved in advocacy efforts), but some private insurance plans may still require documentation.

<u>Act</u>: Adopt.

PDSA #5: Share Resources & Reminder via Newsletter

- Plan: Share resources for patients/families getting started with CGM or new type of device and reminder: "As always, whether you are a new or experienced CGM user, please don't hesitate to contact your U-M Pediatric Diabetes care team with any diabetes device questions."
- Do: Ashley to share information and links to 'Getting Started' videos in August 2023 newsletter (sent 8/18/2023).
- <u>Study</u>: 6 parents clicked links to Dexcom 'Getting Started' videos.
- <u>Act</u>: Adopt.

Getting Started with a CGM

Are you new to using a continuous glucose monitor (CGM)? Did you recently switch to a new device? Check out these resources to learn how to get started!

- Dexcom G6
- Dexcom G7
- Abbott FreeStyle Libre (2 and 3)
- Medtronic Guardian Connect

As always, whether you are a new or experienced CGM user, please don't hesitate to contact your U-M Pediatric Diabetes care team with any diabetes

PDSA #6: Discuss CGM During Basic Education Class

- Plan: Add CGM slide to Basic Education class regarding all types of CGM and let patients know that if they need assistance with putting on CGM, it's okay to bring to basic class.
- <u>Do</u>: Iris & Christina to add slide for teaching; Kelly to tell patients about bringing CGM to Basic Education, if needed, at discharge.
- <u>Study</u>: Find that most patients who order CGM at diagnosis are already using CGM by the time they attend Basic Ed.
- <u>Act</u>: Adapt; Still helpful to promote CGM use during Basic Ed for patients/families who weren't ready to order during admission.

PDSA #7: Inpatient CGM Onboarding

- Plan: Onboard patient/family to Dexcom apps (G6/G7, Clarity, Follow) including helping set up account and connect to clinic for sharing.
- <u>Do</u>: Kelly to test with next new onset patient/family who orders a Dexcom prior to discharge.
- <u>Study</u>: Tested with 1 patient in October 2023 who ordered a Dexcom G6 while inpatient; Successfully helped patient/family install apps and create account; Kelly also notified diabetes educators who sent a sharing invitation.

Act: Adopt* (*will tailor offering based on patient/family readines).

Patients with TID who <u>Have</u> a CGM, by Race/Ethnicity (Feb 2022 – Jun 2024)

Proportion of all patients with T1D who <u>have a CGM</u>: 85% \rightarrow 97%

- Non-Hispanic White Patients with T1D who <u>have a CGM</u>: 87% → 98%
 - Non-White Patients with T1D who <u>have a CGM</u>: $75\% \rightarrow 95\%$

Patients with TID who Have a CGM and <u>Use</u> It, by Race/Ethnicity (Feb 202<mark>3</mark> – Jun 2024)

Proportion of all patients with T1D who have a CGM and <u>use</u> it \geq 70% of the time: 79% \rightarrow 89%

- Non-Hispanic White Patients with T1D who have a CGM and <u>use it</u>: 78% → 89%
- Non-White Patients with T1D who have a CGM and <u>use it</u>: 84% → 88%

Thank You!

For questions: Contact Joyce Lee, MD, MPH joyclee@med.umich.edu

Visit our website! www.UMPedsDiabetes.com

CDCES Clinical Workflows Can Address Challenges and Barriers to Equitable Care in New Onset T1D

Jeannine Leverenz, Shannon Lin, Anjoli Martinez-Singh, Barry Conrad, Annette Chmielewski, Ian Chan, Erica Pang, Franziska K Bishop, Priya Prahalad, David M Maahs

Lucile Packard Children's Hospital Stanford

Disclosures

• I have no disclosures

Funding:

- NIDDK R18DK122422
- Helmsley Charitable Trust (G-2002-04251-2)
- ISPAD-JDRF Research Fellowship
- SDRC (1P30DK 11607401)
- LPCH Auxiliaries
- National Science Foundation (2205084)
- Stanford HAI
- Stanford Maternal & Child Health Research Institute
- Stanford REDCap Platform (UL1 TR003142)
- Dexcom provided the first month of CGM supplies

Stanford Children's Health Children's Hospital Stanford

Background

- The 4T Program (Teamwork, Targets, Technology, and Tight control) at Stanford Children's aims to intensify equitable new-onset type 1 diabetes (T1D) education to improve outcomes.
- The Certified Diabetes Care and Education Specialist (CDCES) team has been pivotal in creating standardized workflows to improve access and tailor care to an individual's needs.

Methods

- Youth with new-onset T1D start on continuous glucose monitoring (CGM) in the first month of diabetes diagnosis
- CDCES reviews CGM data monthly
- Families are directed to attend a pre-Automated Insulin Delivery (AID) class between 1-3 months post-T1D diagnosis

Stanford

 To promote equity, the CDCES team created workflows to decrease barriers for families, which include offering diabetes technology to all patients regardless of insurance status or language spoken (Table 1)

Table 1: Standardized CDCES Workflows for Equitable New Onset T1D Care

1.During Diabetes Self-Management Education (DSME) at diagnosis, families spend the day with the CDCES and need lunch. The CDCES team works with the social work team to provide food delivery gift cards for the family to order lunch

2.CGM and AID systems are introduced by CDCES for anyone with T1D regardless of provider referral, language spoken, and/or insurance status

3.Offer pre-AID classes and trainings in Spanish with our bilingual CDCES

4.Offer pump/AID software upgrades in the clinic for youth who may not be comfortable with technology, have inadequate Wi-Fi, and/or have literacy barriers

Table 1- Cont: Standardized CDCES Workflows for Equitable New Onset T1D Care

5. Provide iOS devices to families without compatible smart devices for CGM data flow for remote patient monitoring

6. Provide CGM supplies for gaps in insurance coverage

7.Electronic health record message pool with the CDCES team and study/program coordinators so they can help with any connectivity issues, supply gaps, etc.

= Patient Reported Outcomes (PROs) Survey: ~15 minutes to complete 🍣

Ξ

୭

Remote Monitoring: Regular CGM data review from diabetes educator

= Systematic pump exposure in months 1-3 – *in English and Spanish*

- *at-home test*
- = Stanford Children's Diabetes Clinic Visit: Historic/Standard of Care

Table 1. Characteristics of the Historical, Pilot 4T, 4T Study 1, and 4T Study 2 Cohorts

Characteristic	Historical	Pilot 4T	4T Study 1	4T Study 2
Ν	272	135	133	183
Baseline characteristics				
Age (years) at T1D diagnosis, median (Q1, Q3)	10 (7, 13)	10 (7, 13)	11 (6, 14)	11 (7, 13)
Sex, n (%)				
Male	137 (50.4)	71 (52.6)	74 (55.6)	85 (46.4)
Female	135 (49.6)	64 (47.4)	59 (44.4)	98 (53.6)
Race/ethnicity, n (%)				
Non-Hispanic White	120 (44.1)	53 (39.3)	52 (39.1)	64 (35.0)
Non-Hispanic Black	5 (1.8)	0 (0)	1 (0.8)	1 (0.5)
Hispanic	69 (25.4)	29 (21.5)	49 (36.8)	70 (38.3)
Asian or Pacific Islander	25 (9.2)	19 (14.1)	11 (8.3)	22 (12.0)
American Indian or Alaska Native	1 (0.4)	0 (0)	0 (0)	2 (1.1)
Other	21 (7.7)	19 (14.1)	17 (12.8)	23 (12.6)
Unknown / Declined to state	31 (11.4)	15 (11.1)	3 (2.3)	1 (0.5)

Table 1. Characteristics of the Historical, Pilot 4T, 4T Study 1, and 4T Study 2 Cohorts – Continued

Characteristic	Historical	Pilot 4T	4T Study 1	4T Study 2
Ν	272	135	133	183
Baseline characteristics				
DKA at diagnosis, n (%)	94 (34.7)	67 (49.6)	72 (54.1)	98 (53.6)
HbA1c (%) at diagnosis, mean (SD)	10.9 (2.5)	12.3 (2.1)	12.2 (2.4)	11.6 (2.6)
Insurance type, n (%)				
Private	197 (73.0)	104 (77.0)	83 (62.4)	110 (60.1)
Public	73 (27.0)	31 (23.0)	47 (35.3)	73 (39.9)
Both	0 (0)	0 (0)	2 (1.5)	0 (0)
No Insurance	0 (0)	0 (0)	1 (0.8)	0 (0)
Primary language, n (%)				
English	245 (90.1)	117 (86.7)	112 (84.2)	158 (86.3)
Non-English	27 (9.9)	18 (13.3)	21 (15.8)	25 (13.7)

Table 2Follow-up Chara

<u>Characteristics</u>	Historical	Pilot 4T	4T Study 1	4T Study 2
Ν	272	135	133	183
Follow-up characteristics				
CGM initiation within 1 year, n (%)	102 (37.5)	132 (97.8)	133 (100)	182 (99.5)
Initiated CGM <= 30 days, n (%)	6 (2.2)	124 (91.9)	131 (98.5)	182 (99.5)
Days to CGM initiation, median (Q1, Q3)	100 (50, 172)	7 (5, 11)	10 (6, 18)	6 (4, 13)
CGM wear time* (%), median (Q1, Q3)	N/A	90.7 (55.8, 96.0)	96.4 (89.3, 97.9)	96.8 (91.7, 98.4)
Insulin pump use within 1 year, n (%)	89 (32.7)	48 (35.6)	66 (49.6)	106 (57.9)
Predictive Low-Glucose Suspend	2 (0.7)	2 (1.5)	2 (1.5)	0 (0)
Open loop	66 (24.3)	30 (22.2)	34 (25.6)	5 (2.7)
Automated Insulin Delivery (AID)	21 (7.7)	17 (12.6)	33 (24.8)	105 (57.4)
None	183 (67.0)	87 (64.4)	67 (50.4)	77 (42.1)
Days to pump initiation, median (Q1, Q3)	178 (111, 250)	142 (91, 256)	162 (86, 255)	85 (61, 170)

*Percentage of time CGM is worn out of eligible hours of device wear.

- For study 2 183 participants enrolled
- 122 participants \geq 1 year in the study
- 50 participants in the study between 6-12 months
- 11 participants in the study between 3-6 months

Data Collection Ongoing

Conclusions

 Standardized workflows created by the CDCES team and tailored to patient needs decreased the barriers to technology uptake, increased the use of CGM and AID, and shortened the initiation time in the year after T1D diagnosis.

Lucile Packard Children's Hospital Stanford

Acknowledgements: Teamwork, Targets, Technology and Tight Control in Newly Diagnosed Pediatric T1D: 4T Study

Investigators:

- David Maahs, MD, PhD
- Priya Prahalad, MD, PhD
- David Scheinker, PhD
- Manisha Desai, PhD
- Korey Hood, PhD
- Ananta Addala, DO
- Ramesh Johari, PhD
- Dessi Zaharieva, PhD, CDCES
 - *PI of exercise study*
- Diana Naranjo, PhD
- Emily Fox, PhD
- Carlos Guestrin, PhD
- Molly Tanenbaum, PhD

Staff Scientist:

Franziska Bishop, MS, CDCES

Coordinators:

- Ana Cortes, BS
- Erica Pang, BS ٠
- Rachel Tam. BA ٠
- Ilenia Balistreri, BS .
- Alondra Loyola, BS ٠
- Noor Alramahi, BA ٠
- Eliana Frank, BS (CRM)

Clinical Staff:

S

- Jeannine Leverenz, RN, CDCES
- Piper Sagan, RN, CDCES ٠
- Anjoli Martinez-Singh, RD, CDCES ٠
- Annette Chmielewski, RD, CDCES .
- Shannon Lin, RD, CDCES .
- Barry Conrad, RD, CDCES .
- Kim Clash, NP ٠
- Julie Senaldi, RN, CDCES
- Mindy Lee, MD, PhD
- Kylie Seeley MD, MPH ٠
- Lauren Horton, CDNP, DNP

Systems Utilization Research for Stanford Medicine (SURF):

- Gloria Keoung Kim, MS
- Paul Dupenloup, PhD
- Jamie Kurtzig, BS
- Ransalu Senanayake, PhD
- Mateo Petel, BS
- Pierre-Amaury Laforcade, BS

Quantitative Sciences Unit (QSU):

- Victoria Ding, MS •
- Victor Ritter, PhD
- Blake Shaw, MS
- Bryan Bunning, MS (PhD candidate)

T1D Working Group (Statistics):

- Johannes Ferstad, MS
- Bob Junyi Zou, PhD
- Alex Wang, MS
- Yujin Jeong, BS

Informatics:

- Natalie Pageler, MD
- Simrat Ghuman. PhD
- Connor Brown, BS
- Brendan Watkins, MBA
- Glenn Loving, MS

Collaborators:

York University:

Michael Riddell, PhD

Children's Mercy:

Mark Clements, MD, PhD

Funding:

- NIDDK R18DK122422
- Helmsley Charitable Trust (G-2002-04251-2)
- **ISPAD-JDRF** Research Fellowship
- SDRC (1P30DK 11607401)
- LPCH Auxiliaries •
- National Science Foundation (2205084)
- Stanford HAI
- Stanford Maternal & Child Health Research Institute
- Stanford REDCap Platform (UL1 TR003142)
- Dexcom provided the first month of CGM supplies

ConnecT1D Data Visualization: Informing Interventions and Equitable Improvement in Outcomes for Type 1 Diabetes (T1D) Patients

Amanda Howell, MPH, CPH; Nana-Hawa Yayah Jones, MD; Patrick W. Brady, MD, MSc; Michelle I. Knopp, MD; Amy Grant, DNP, RN, CPN; Laura Smith, PhD, CDCES; Amanda Riley, MS, RD, LD, CDCES, Marissa Town, BSN, RN, CDCES; Sarah Corathers, MD

Cincinnati Children's Diabetes Center

Academic Diabetes Center

- T1D registry 2300 patients
- Average ~200 new onset/year

Our Team

- 19 Physicians, 9 APRNs
- 19 CDCES 7 RNs, 12 RDs
- 6 Social Workers
- 1 PhD, CDE Psychologist
 - Additional Psychologists from Behavioral Medicine & Psychology Dept
- 1 Administrative Care Coordinator
- 1 Clinical Quality Specialist
- 2 Data Analysts
- Community Health Workers/Community Psychiatric Support Team
- Community partnerships
- Patients & Families

Patient Population

- 85% White
- 10% Black
- 4% Hispanic
- 1% Asian

- 67% Private Insurance
- 33% Public Insurance

2024-2025

HealthVine **OVERVIEW**

Mission & Vision

HealthVine is a network of pediatric care providers and organizations [backed by Cincinnati Children's] that connect to help children be healthier, more effectively and affordably. Through the power of collaboration, and using our combined expertise, we coordinate care and support services for families that enable children to thrive by living their healthiest lives.

Patient Population

130,000+ CareSource-covered youth up to age 19 as well as young adults ages 19 to 21 in the Aged Blind and Disabled (ABD) program who reside in eight counties in Southwest Ohio including Adams, Brown, Butler, Clermont, Clinton, Hamilton, Highland and Warren.

Delegated Services

HealthVine is assuming accountability for **care management**, **utilization management**, and **quality improvement**. Member services and programs through CareSource will not change.

Background/Objective

- ConnecT1D
 - Diabetes Clinic innovation project supported by the Helmsley Charitable Trust
 - Focusing on patients within the HealthVine population that have Type 1 Diabetes (<19 yrs)
- Data visualization
 - Dynamic
 - Near-real time
 - Equity focused

Methods

Patients with Encounter During Reporting Month on Automated Insulin Delivery System: HealthVine

Reporting Month Updated through 1/1/2021 10/1/2024 October 2024

Status	Measure	HealthVine Goal	HealthVine	Non-HealthVine	T1D HealthVine with Encounter in Reporting Month [*]	Desired Direction	Details
	Patients with Consistent Clinic Visits (%)	95%	89%	90%	90% 80% *Full Population	1	>
	Percentage of Patients on CGM	90%	94% Shift up 3%	97 %	100%	1	>
	Percent of Patients on Automated Insulin Delivery System	80%	69 %	75 % Shift up 5%	50%	1	>
	Average % Time in Range of Patients on CGM	TBD	50%	54%	60% 40%	1	>
	Percentage of Patients on Insulin Pump	75%	63%	75%	80% 60% 40% 20%	ᠿ	>
	Patients with Psychology and/or Social Work Visit	80%	77%	58%	100%	1	>
	Mean Hemoglobin A1C	8.2	8.8	7.9	10.0 9.0 8.0	€	>

Reporting Month Updated through
1/1/2021 10/1/2024 October 2024

Status	Measure	HealthVine Goal	HealthVine Current Centerline	Non-HealthVine Current Centerline	T1D HealthVine with Encounter in Reporting Month*	Desired Direction	Details
	Patients with Consistent Clinic Visits (%)	95%	89%	90% Latest Reporting Month	90% 80% *Full Population	1	>
	Percentage of Patients on CGM	90%	94 % Shift up 3%	97 %	100% 50%	1	>
	Percent of Patients on Automated Insulin Delivery System	80%	69%	75 % Shift up 5%	50%	1	>
	Average % Time in Range of Patients on CGM	TBD	50%	54%	60%	ᠿ	>
	Percentage of Patients on Insulin Pump	75%	63%	75%	80% 60% 40% 20%	1	>
	Patients with Psychology and/or Social Work Visit	80%	77%	58%	100%	1	>
	Mean Hemoglobin A1C	8.2	8.8	7.9	10.0 9.0 8.0		>

Measure includes all patients in their respective populations, calculated with their last eligible encounter

Measure includes all patients with an encounter during the reporting month

Measure includes all patients in their respective populations, calculated with their last eligible encounter

Measure includes all patients with an encounter during the reporting month

Reporting Month Updated through Stratified by: Percent of Patients on Automated 10/1/2024 12/1/2021 October 2024 Insulin Delivery System Age Duration of Diabetes Ethnicity/Race T1D Population Over Time: % Automated Insulin Delivery System HealthVine Status: OHealthVine Non-HealthVine 100% 80% 60% 40% 20% 0% Jan 2022 Jul 2022 Jul 2023 Jul 2024 Jan 2023 Jan 2024

Percent of Patients on Automated Insulin Delivery System	Stratified by: Age	Duration of Diabetes	Ethnicity/Race	Month Updated through 10/1/2024 October 2024
T1D Population on Automated Insulin Delivery System C HealthVine Status: HealthVine Non-HealthVine	over Time: Average A1C			AID-No AID-Yes
10.0				
9.0				
8.0				
7.0				
6.0 Jan 2022 Jul 2022	Jan 2023	Jul 2023	Jan 2024	Jul 2024

Measure includes all patients in their respective populations, calculated with their last eligible encounter

Measure includes all patients with an encounter during the reporting month

Conclusions

Cincinnati Children's changing the outcome together

- Demonstrates population changes over time
 - Effective report building
- Stratification to monitor gaps & identify opportunities
- Continuous feedback loop

Discussion / Questions?

