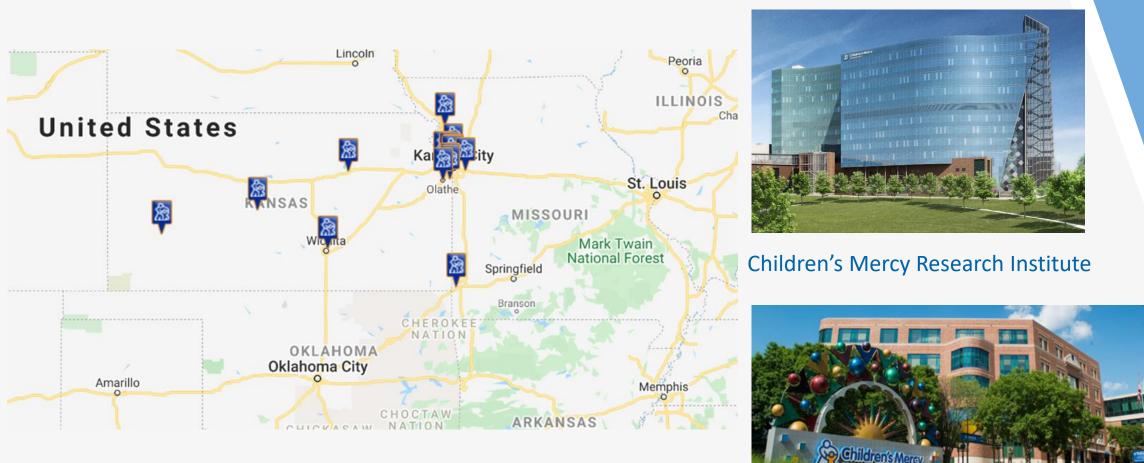
Understanding facilitators and barriers to clinic-wide implementation of a population-based tool to identify patients with type 1 diabetes (T1D) at high risk for suboptimal glycemic outcomes

Emily DeWit, MASL Children's Mercy Kansas City

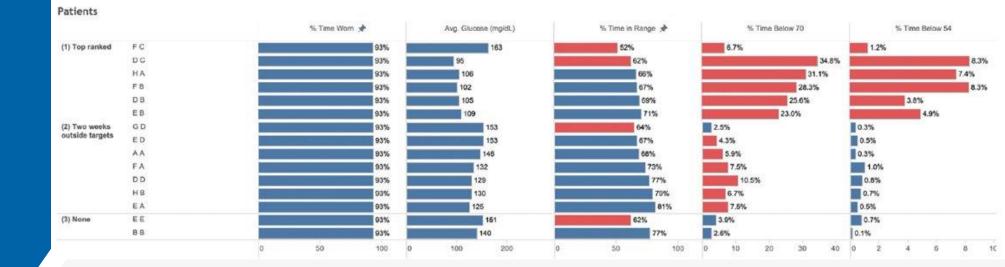
Disclosure Information


I have no disclosure or conflicts of interest with the presented material in this presentation

Where is Children's Mercy Kansas City?

2 hospitals10 clinics

Division of Pediatric Endocrinology & Diabetes

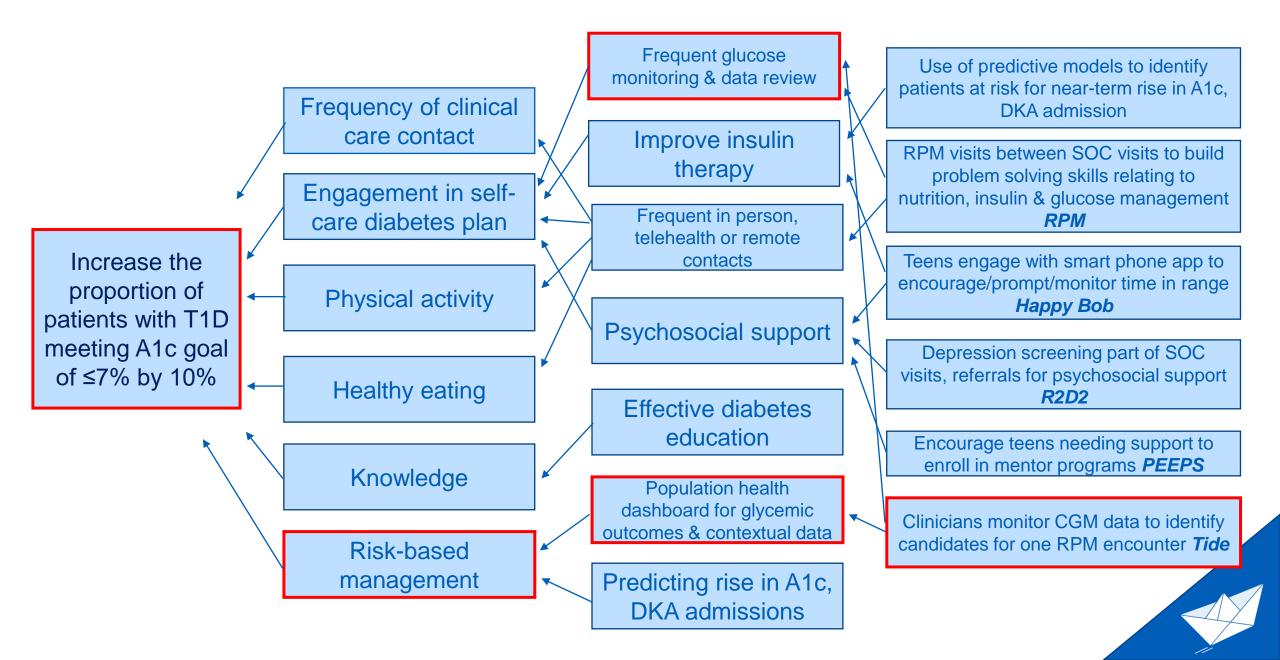

- 29 Pediatric endocrinologists/25.65 FTE
- 5 APRN/4.8 FTE
- 27 Nurses/16 FTE (15 with CDCES certification)
- 5 Dietitians (4 with CDCES certification)
- 5 Social workers
- 2 Psychologists
- 2,700 T1D
- 275 T2D

Background

- Timely interventions for diabetes excellence (TIDE) developed by Stanford
- Population-level tool, analyzes CGM data
- Displays summary of patient's data &
 identifies patients with deteriorating glucose control

WHAT

HOW


MRN	Date	CGM Risk Category	CGM Days	Wear %		Measure % > 180					Bolus Score	Most Recent Clinic Visit	Age at Visit
	•		-										
	August 6, 2023	(3) >15% Drop in Time	2	56.7 🔴	2.8 🏴	97.2 🏴	72.4 🏴	0.0 🔵	0.0) 20.7 🏴		July 18, 2023	18

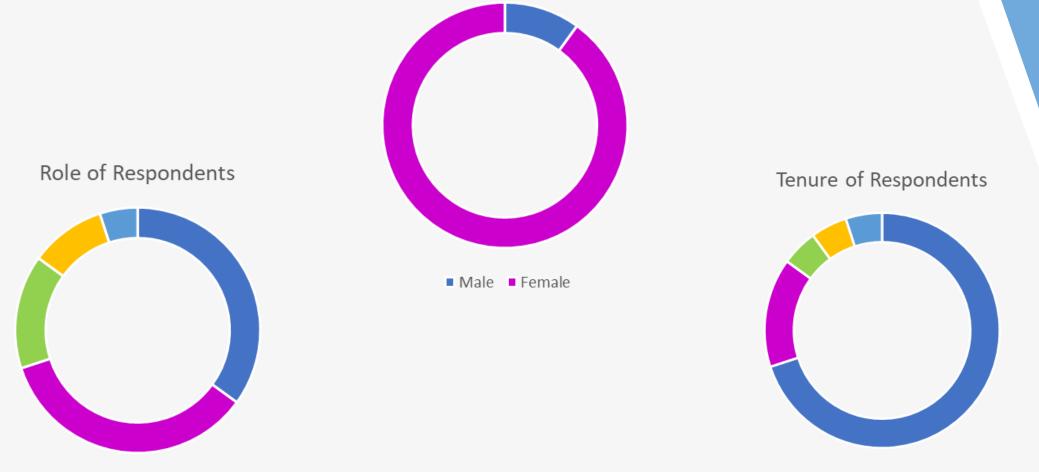
SMART AIM

PRIMARY DRIVERS

SECONDARY DRIVERS

INTERVENTION EXAMPLES

Methods


- Recruited clinicians to participate in **REDCap** survey
 - Video introduction to the tool
 - Anchored staff to CM performance towards T1D Exchange goals (set purpose)
 - COM-B model framed questions
 - Capability
 - Opportunity
 - Motivation

Organizational Readiness for Implementing Change (ORIC)

	1	2	3	4		5			
	Disagree	Somewhat Disagree	Neither Agree nor Disagree	Somewhat Agree		Agree			
1.		ork here feel confident lementing this chang	nt that the organization ge.	on can get people	1	2	3	4	5
2.	People who wo	ork here are committ	ed to implementing t	his change.	1	2	3	4	5
3.	People who wo		nt that they can keep	track of progress	1	2	3	4	5
4.	People who wo	ork here will do what	ever it takes to imple	ment this change.	1	2	3	4	5
5.		ork here feel confider adjust to this chang	nt that the organization.	on can support	1	2	3	4	5
6.	People who wo	ork here want to impl	ement this change.		1	2	3	4	5
7.		ork here feel confident nenting this change.	nt that they can keep	the momentum	1	2	3	4	5
8.		ork here feel confide in implementing thi	nt that they can hand s change.	le the challenges	1	2	3	4	5
9.	People who wo	ork here are determin	ned to implement this	s change.	1	2	3	4	5
10.		ork here feel confider ation goes smoothly	nt that they can coord	dinate tasks so	1	2	3	4	5
11.	People who wo	ork here are motivate	ed to implement this o	change.	1	2	3	4	5
12.	People who wo implementing the		nt that they can man	age the politics of	1	2	3	4	5

Results

Gender of Respondents

■ 0-5 years ■ 6-10 years ■ 11-15 years ■ 16-20 years ■ 21-25 years

Results

Test Ideas/Facilitators

Perceived Barriers to Implementation

- De-implement ineffective practices
- Build tracking into tool

- Incentives for self-identified champions to start
- Reviewing data during clinic visit (does Tide reduce clinic visit time?)
- Add visual cues to draw attention to risk level
- Recorded, live, and written trainings were developed and implemented
- Shadowing seasoned user

Conclusion/Lessons Learned

- Wideo introduction and anchoring to existing goals provide clear context for assessing readiness for implementing a new tool/processes
- Conducting a survey with clinic staff (ORIC and Com-B framed) can identify change ideas to ensure potential barriers are addressed when implementing new tool/processes
- Acting on feedback from clinic staff gains buy-in
- Phased implementation beginning with self-identified champions is key for success

References

Ferstad, J. O., Vallon, J. J., Jun, D., Gu, A., Vitko, A., Morales, D. P., Leverenz, J., Lee, M. Y., Leverenz, B., Vasilakis, C., Osmanlliu, E., Prahalad, P., Maahs, D. M., Johari, R., & Scheinker, D. (2021). Population-level management of type 1 diabetes via continuous glucose monitoring and algorithm-enabled patient prioritization: Precision health meets population health. *Pediatric diabetes*, *22*(7), 982–991.

> Shea CM, Jacobs SR, Esserman DA, Bruce K, Weiner BJ. Organizational readiness for implementing change: a psychometric assessment of a new measure. Implement Sci. 2014 Jan 10;9:7. doi: 10.1186/1748-5908-9-7. PMID: 24410955; PMCID: PMC3904699.

Michie S, van Stralen MM, West R. The behaviour change wheel: a new method for characterising and designing behaviour change interventions. *Implement Sci IS*. 2011;6:42. doi:10.1186/1748-5908-6-42

THANK YOU!

Charitable Trust

Stanford team

CM Clinicians

Alliance Team

Rising T1DE

Helmsley

•

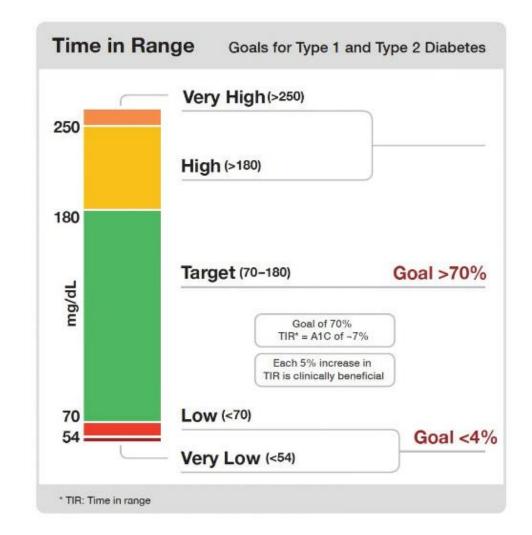
 \bullet

COPYRIGHT© 2021 RISING T1DE ALLIANCE ALL RIGHTS RESERVED.

November 14, 2023

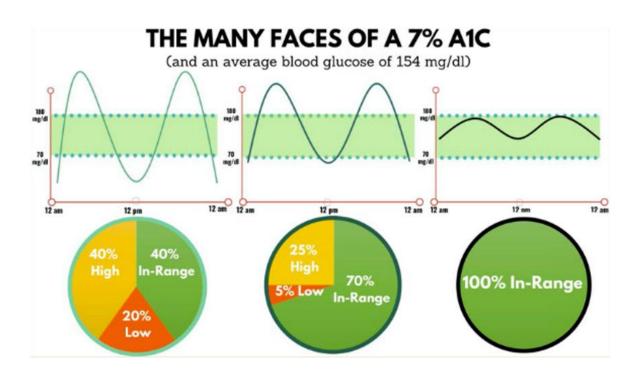
Improving Glycemic Management in Patients with Type 1 Diabetes through Time in Range Patient Education

Alexander Waselewski, MD; Ashley Garrity, MPH; Christina Finn, RN; Janet Dominowski, RD, CDCES; Elizabeth S. Sandberg, MD; Inas Thomas, MD; Joyce M. Lee, MD MPH


U-M Pediatric Diabetes C.S. Mott Children's Hospital, University of Michigan Health

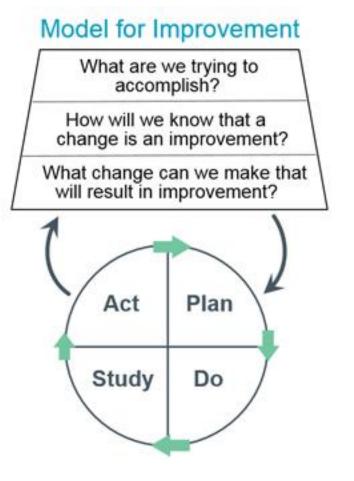
Multidisciplinary Team (FTEs*)	Patient Volume & Demographics	Contacts
 3.0 endocrinologists 1.5 fellows 3.0 dietitians (2.0 w/CDCES) 4.8 RNs (2.8 w/CDCES) 	 Main clinic at academic medical center + 1 satellite clinic 100-150 new onsets annually ~1300 established T1D patients 	Site PI Joyce Lee, MD, MPH <u>joyclee@med.umich.edu</u>
2.0 social workers1.0 psychologist	 30% publicly insured 	Site Coordinator Ashley Garrity, MPH <u>ashleyna@med.umich.ed</u>
*Devoted to T1D patient care		<u>u</u>

Background


- American Diabetes Association (ADA) guidelines for type 1 diabetes (T1D) recommend time in range (TIR) ≥70% (blood sugars between 70-180 mg/dL) and less than 4% hypoglycemia (blood sugars <70 mg/dL)
- Optimizing time in range reduces microvascular complications associated with diabetes

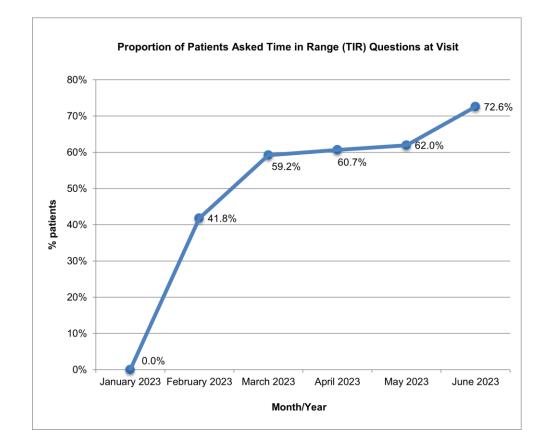
Background

 TIR is an important tool in diabetes self-management as hemoglobin A1c (HbA1c) does not tell the whole story of blood sugar excursions


Aims

- Overall aim to improve TIR among our patients with T1D using a continuous glucose monitor (CGM)
- Short-term aim to increase point-of-care TIR education at quarterly clinic visits from 0% to 95% over 12 months

Methods


- PDSA cycle #1: QI team identified knowledge gap in patient understanding of TIR by asking individual patients and families at clinic visits and recording responses
- PDSA cycle #2: Created an educational handout for patients, electronic health record (EHR) smart phrase about TIR, and added clinic flowsheet questions to standardize TIR education
- Initially tested with QI team, then scaled to entire division
- Measured: 1) providers discussing TIR and 2) patient/family knowledge about TIR and goals at quarterly visits

Results

- Initial knowledge gap identified January 2023
- Pilot implementation of interventions (EHR flowsheet questions, educational materials) began with two providers in February 2023
- Patients asked 3 questions: definition/target range, goal for in range, and goal for hypoglycemia
- Scaled to full implementation across division in June 2023
- Over six months, the proportion of patients asked about TIR increased from 0% to 72.6%

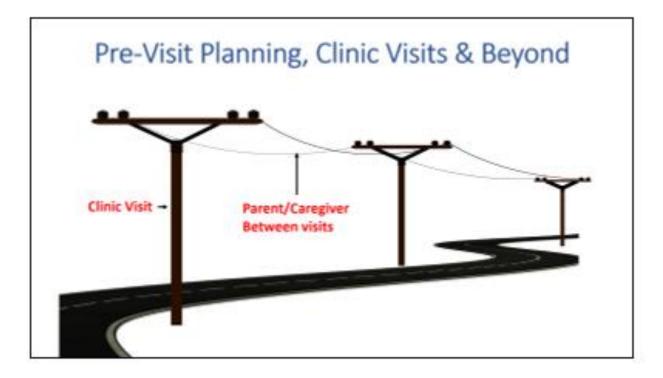
Conclusions

- Implementing standardized questions in EHR flowsheet increased number of patients with whom our diabetes team discussed TIR goals during clinic visits
- We have yet to see an effect on the proportion of patients meeting TIR goals, but expect with time this will improve with further education
 - Increased adoption of diabetes technology, particularly automated insulin delivery systems, is also expected to improve the number of patients meeting TIR goals
- Project ongoing to reach remaining patients and assess if TIR goals are being met by patients

For more information, please contact Alexander Waselewski, MD: waselewa@med.umich.edu

CONNECT1D

ConnecT1D aims to reinforce connections between patients, the clinic, and community partners to achieve excellent and equitable glycemic and psychosocial outcomes for young people with type 1 diabetes.



Parent Perspective

"The clinic visit is a small portion of the care for a child with diabetes. Parents/ caregivers come to the clinic visit to get recharged – to get questions answered – to talk to the people who know how to take care of a child with diabetes.

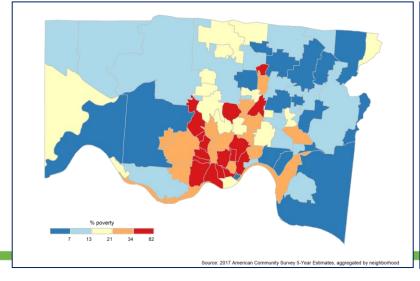
Between the visits – The parent caregiver is the one providing the care to the child. Many times, It is their sole responsibility."

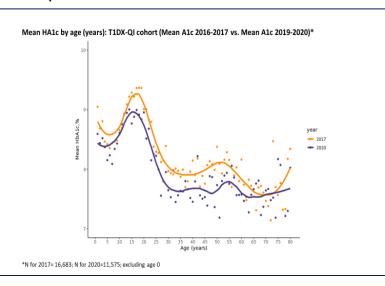
Justin Masterson, Parent of child with T1D

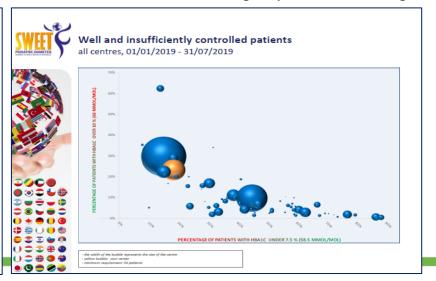
Type 1 Diabetes Health Equity Program Goals

Through partnerships locally, nationally and internationally, Cincinnati Children's will contribute to achievement of health, longevity and quality of life for all youth and young adults with diabetes.

Health Equity Network




Improvement in HbA1c over time in T1Dx-QI



International SWEET registry benchmarking

Poverty quintiles in Hamilton County, Ohio

TID Exchange Health Equity Advancement Lab (HEAL) Program

CONNECT1D

Design and implementation of a more efficient, proactive delivery model for T1D care that supports patients and families through:

- Equitable access to diabetes technology
- Strengthening community relationships
- More frequent communication between visits
- Integration of diabetes devices into the electronic medical record.

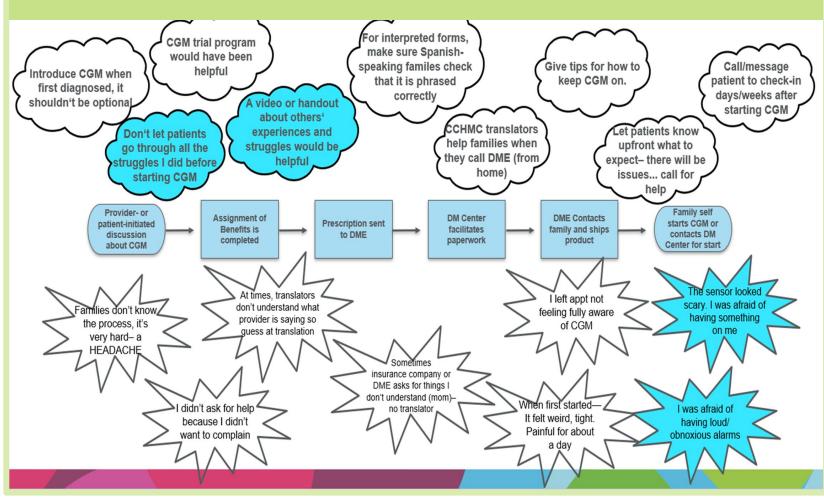
Design Day Session: Engaging Patients, Cincinnati Children's Caregivers, & Diabetes Center

ConnecT1D—HCT Key Driver Diagram (KDD)

Project Leader: Sarah Corathers, MD

Revision Date: 8/1/2023

Global Aim	Focus Areas & Process Measures	Key Drivers		Interventions		
				Expand clinic locations (LOR 2) (EB-M)		
Achieve excellent and	Access Increase the percentage of HealthVine T1D patients with	Standardized system, processes, and polices to support consistent follow-up		Use Epic report to call/schedule patients who are overdue for follow-up (LOR 2)		
equitable outcomes for children with Type 1 Diabetes	consistent clinic visits* from 90% to	Available appointments and optimized access		Utilize a mobile outreach van (LOR 2) (EB-M)		
	95% by February 1, 2024 *Seen in Diabetes Clinic by	for family's needs/preferences		Expand CGM trial program (LOR 2)		
SMART Aims	medical provider in the last 150 days	Structured preparation and coordination for clinic visits		Initiate access to CGM technology at CCHMC pharmacy and DME (LOR 2)		
Decrease mean A1c of	Technology	Affordable and patient-centered technology	\square	Use a No CGM List with pre-visit planning (LOR 1)		
HealthVine T1D patients from 9.4% to 8.2% by February 1, 2024	Increase the percentage of HealthVine T1D patients on CGM from 58% to 90% by	access across the continuum of care	\searrow	Utilize coordinator roles: Financial counselor, insurance navigator, care coordinator (LOR 2) (EB-M)		
February 1, 2024. Increase percentage of HealthVine T1D patients on CGM with time in range above 50% from x% to y% by	February 1, 2024.	Support and connection for patients/families	$\langle $	Integration of diabetes data into EHR (LOR 2)		
	Increase the percentage of HealthVine T1D patients on insulin	between visits Proactive review of diabetes device data between visits		Create Listserv for emailing resources/information to HealthVine patients/families (LOR 2)		
	pump from 53% to 75% by	Detween visits	\mathbf{X}	Enhance current school nurse program (LOR 1) (EB-VL)		
February 1, 2023	February 1, 2024. Psychosocial	Trusting and collaborative relationships amongst patient/family, community, school, & DM Center		Review charts of all HealthVine patients during the month of their birthdate (LOR 1)		
Population	Increase the percentage HealthVine T1D patients with social work or	Impactful psychosocial support	$\Delta \lambda$	Have an embedded psychologist in clinic (LOR 2) (EB-M)		
Youth 0-18 yr with Type 1 Diabetes and HealthVine	BMCP encounter* within the proceeding 12 months from 55% to 80% by February 1, 2024.	Tailored treatment options to meet patient's individualized needs		Create high-risk patient list using data filters for risk factors (i.e. A1c, no tech, admissions, SDH) (LOR 2)		
insurance	*Visits during DM clinic and appts outside of DM clinic	Legend		Collaborate with Diabetes Community Health Worker and care manager (LOR 2) (EB-M)		
. Anderson Center for Health Systems Excellence	Note: LOR # = Level of Reliability Number, e. Evidence Base : EB Level <i>EB-H, EB-M, EB-L</i> (High, Moderate, Low, Very Low, Consens	, EB-VL, or EB-C Adopted intervention		Identify and address social determinants of heath with SDH screening (LOR 2) (EB-L)		


EDICT: Equity in **Di**abetes Care & Transformation

Arlo CGM Patient

Voice of the Customer

Example Interventions/Interventionalists

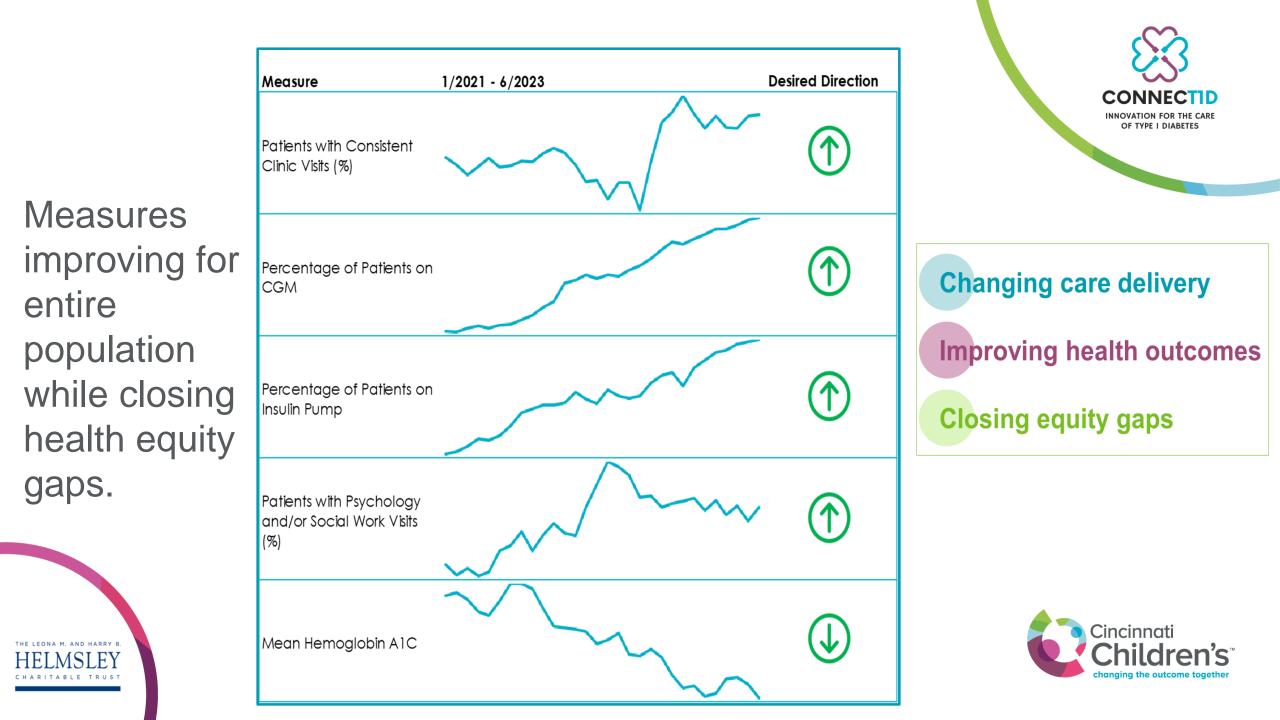
Diabetes Community Health Workers

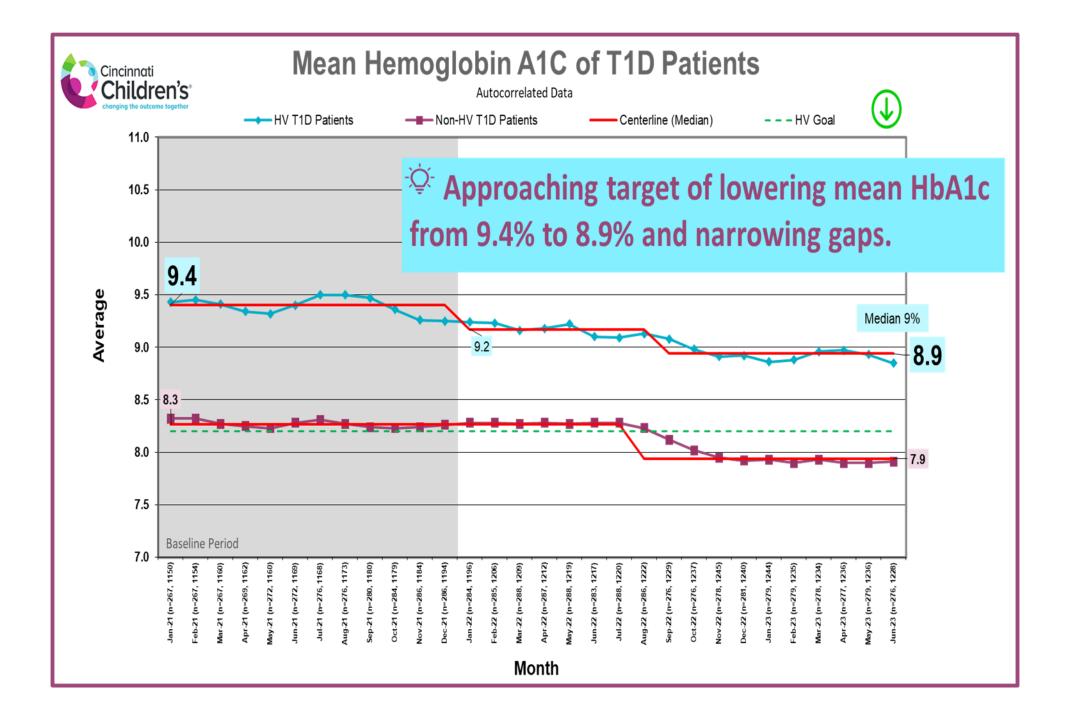
Enhancing access to care:

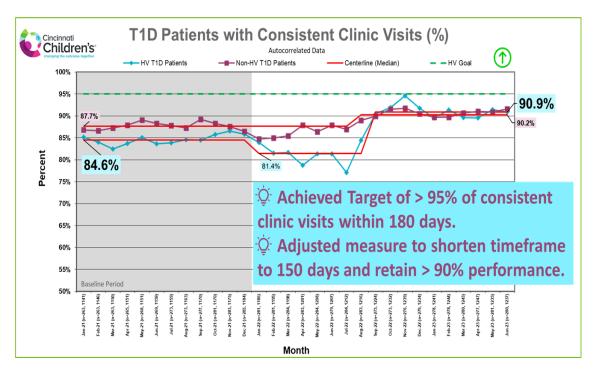
- Proactive contact between visits
- Mobile care unit
- Embedded psychologist in clinic
- Consistent clinic visit and pre-visit planning

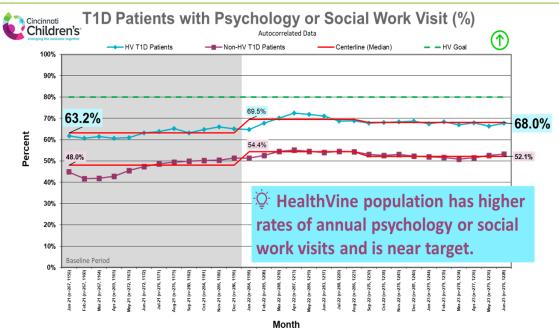
Diabetes and community expertise:

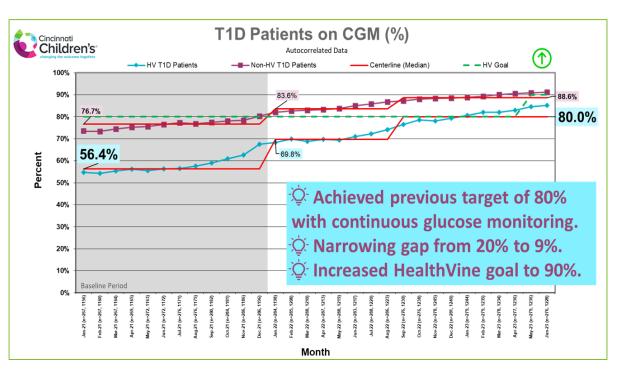
- Address housing, transportation, safety, behavioral health needs
- Navigate phone programs for diabetes technology needs

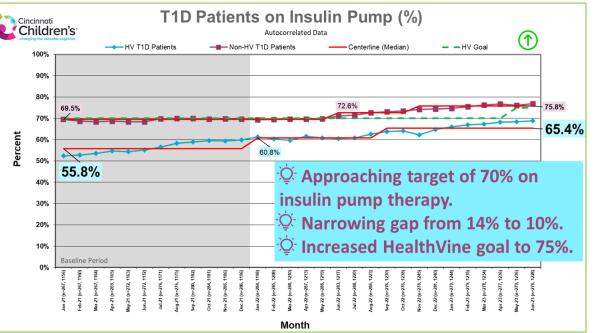

Mobile Care Clinic

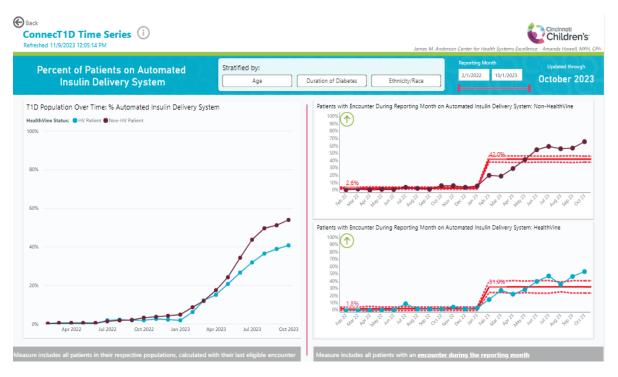



Social Supports Beyond Clinic


Expanding team diabetes:


- Family and peer support through community programs like Friends for Life and ADA camp
- School nurse program attended by 115 participants
- Partnership with JDRF for back-to-school workshops





- Community outreach
 event at Cincinnati Zoo
- Developing measures for TIR, AID
- Access between visits (Joyce Lee 6 habits®)
- Integrating CGM data into Epic

Promoting Continuous Glucose Monitoring (CGM) Prescriptions in Academic Training Clinics

Jovan Milosavljevic, MD; Rohan Maini, MD; Sarah Baron, MD, MS; Jing-Yu Pan, MD; Priyanka Mathias, MD; Shivani Agarwal MD, MPH

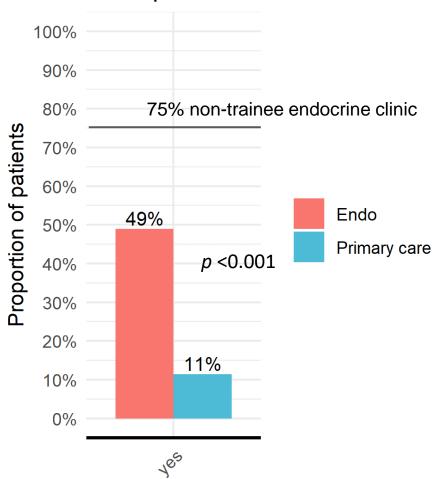
Albert Einstein College of Medicine, Bronx, New York, USA.

Introduction

- CGM could be a transformative diabetes management tool and is likely underutilized in trainee clinics, especially in primary care
- There is unique opportunity to start CGM interventions in trainee clinics where provider practice habits are being developed
- Over the last year, we have used QI methodology to increase CGM prescription rates in endocrinology trainee clinic
- Objectives:
 - Examine baseline CGM prescription rates across endocrinology and primary care trainee clinics and evaluate factors associated with CGM prescriptions
 - Plan and test interventions to promote CGM prescriptions in trainee clinics using QI methodology

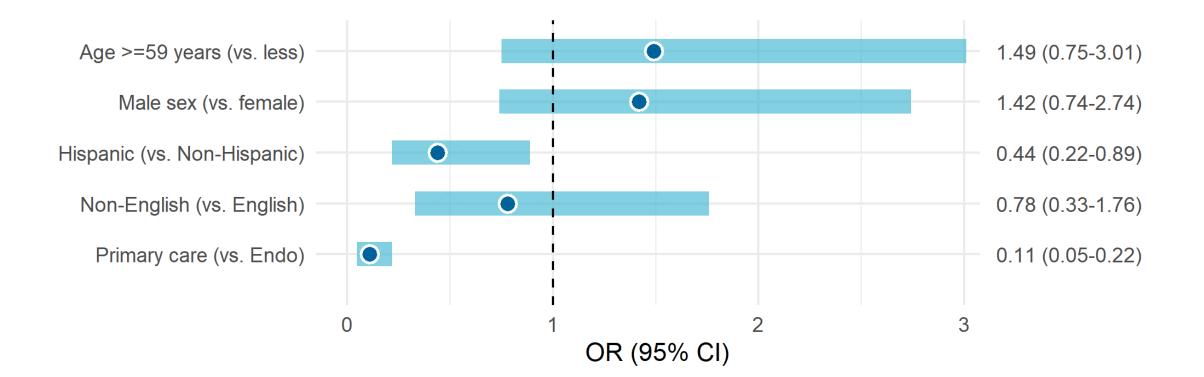
Methods

- Inclusion criteria (baseline data analysis, January-March 2023):
 - Age \geq 18 years
 - Visit with adult endocrinology or primary care trainee clinic in study period
 - Treatment with multiple daily injection (MDI) insulin
- Data collected from EHR
- Statistical analysis:
 - Primary outcome: CGM prescribed (yes/no)
 - Descriptive statistics
 - Logistic regression


Table 1. Participant characteristics

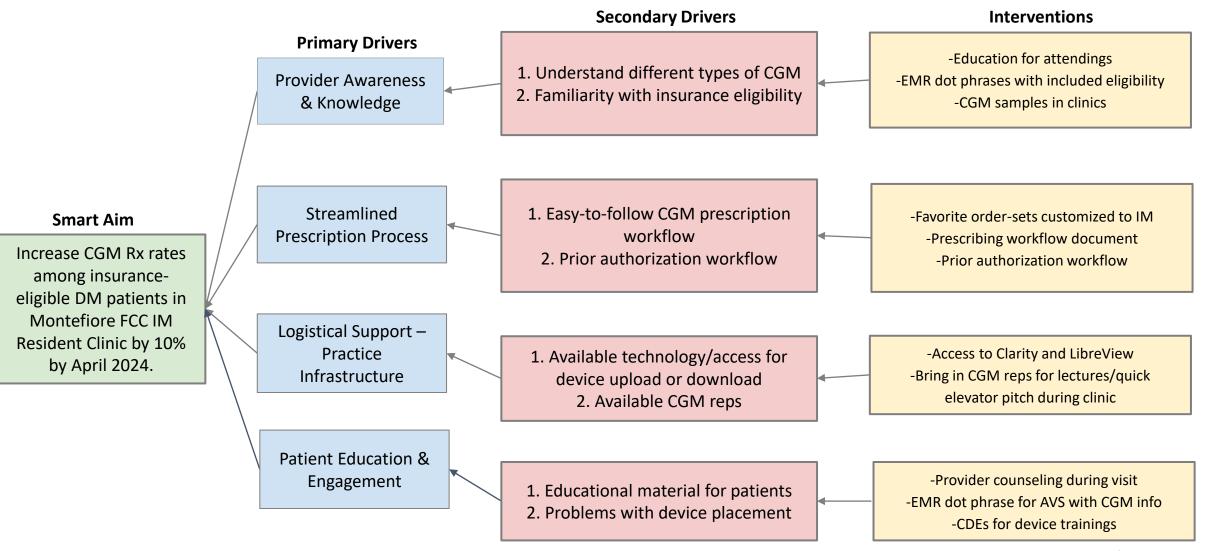
-	All patients	Endocrinology	Primary care	
Characteristic	(n = 244)	(n = 96)	(n = 148)	p-value
Age (years)	58.5 ± 14.7	54.7 ± 15.0	60.9 ± 14.0	0.001
Sex (male)	127 (52.0)	49 (51.0)	78 (52.7)	0.80
Race/ethnicity				0.30
Hispanic	121 (49.6)	50 (52.1)	71 (48.0)	
Nonhispanic Black	58 (23.8)	26 (27.1)	32 (21.6)	
Nonhispanic White	11 (4.5)	2 (2.1)	9 (6.1)	
Other	54 (22.1)	18 (18.8)	36 (24.3)	
Language				0.014
English	173 (70.9)	76 (79.2)	97 (65.5)	
Spanish	57 (23.4)	19 (19.8)	38 (25.7)	
Other	14 (5.7)	1 (1.0)	13 (8.8)	
Diagnosis				< 0.001
T2D	87 (75.0)	30 (57.7)	57 (89.1)	
T1D	24 (20.7)	20 (38.5)	4 (6.3)	
Other	5 (4.3)	2 (3.8)	3 (4.7)	
Missing data	128 (52)	44 (46)	84 (57)	

Numerical data expressed as mean \pm SD. Categorical data expressed as n (%).


CGM prescription rates: Endocrinology vs. primary care

CGM prescribed

Factors associated with CGM prescription



Conclusions

- CGM prescription rates overall were low in trainee clinics compared to Montefiore endocrinology benchmark
- Expected in primary care, but unexpected in endocrinology trainee clinics
- CGM was less likely to be prescribed for patients of Hispanic race-ethnicity but was not associated with Spanish language preference
- Efforts need to be ongoing in endocrinology trainee clinic, with new focus in primary care

Future directions: promoting CGM uptake in primary care trainee clinics

Fishbone diagram

POLICIES & PROCEDURES

- Insurance denials and limited reauthorization of refills
- Clinical considerations needed by insurances (use of insulin, history of hypoglycemia)
- DME procedures complicated
- Variation among payor requirements

PRODUCT

- Cost/copay
- Differences between brands of CGM (ease, accuracy)
- Physician lack of access to CGM data
- Must wear it all the time
- Patient troubleshooting

EQUITY

- Language limitations (Spanish)
- Social determinants of health
- Cost/insurance access
- Mistrust in medical devices and physicians
- Limited access of transportation to appointments and pharmacies

Fishbone Diagram

Decreased continuous glucose monitor (CGM) prescriptions in the primary care clinic

PLACE

- Long waiting list for clinic appointments
- Pharmacy product availability
- Companies and clinics only available during work hours

PROCESS

- Standardization is difficult due to insurance variability
- Often must fill out paper forms
- Ordering and shipping delays
- Competing priorities in PCP office

PEOPLE

- Availability of prior authorizations staff
- Provider bias
- Lack of resident/attending education/awareness
- Limited patient education and technology adoption anxiety
- Patient communication barriers and cultural considerations

Timeline for the project: July 2023 - June 2024

July August Sept	Oct Nov Dec	Jan Feb March	April May June
Baseline data analysis Project planning Meeting clinic team Meeting prior auth staff Meeting with CDEs	CGM education for providers Prescribing workflow CGM data access and interpretation education for providers	CGM training for patient (CDEs)	:S

Tracking CGM prescription rates Results

THANK YOU

QI team Rohan Maini, MD Jing-Yu Pan, MD Priyanka Mathias, MD Shivani Agarwal MD, MPH

The Philip Lief Quality Improvement Program

QI Coaches Sharon Rikin, MD Sarah Baron, MD, MS

FCC clinic staff

T1D Exchange QI collaborative

November 14, 2023

Managing Diabetic Ketoacidosis in a Moderate Ca Quality Improvement Initiative

Nellie S. Hani, MD, Athina Sikavitsas, DO, Ashley Garrity, MPH, Kimberly K. Monroe, MD, Christine E. Mikesell Thomas, MD

Background

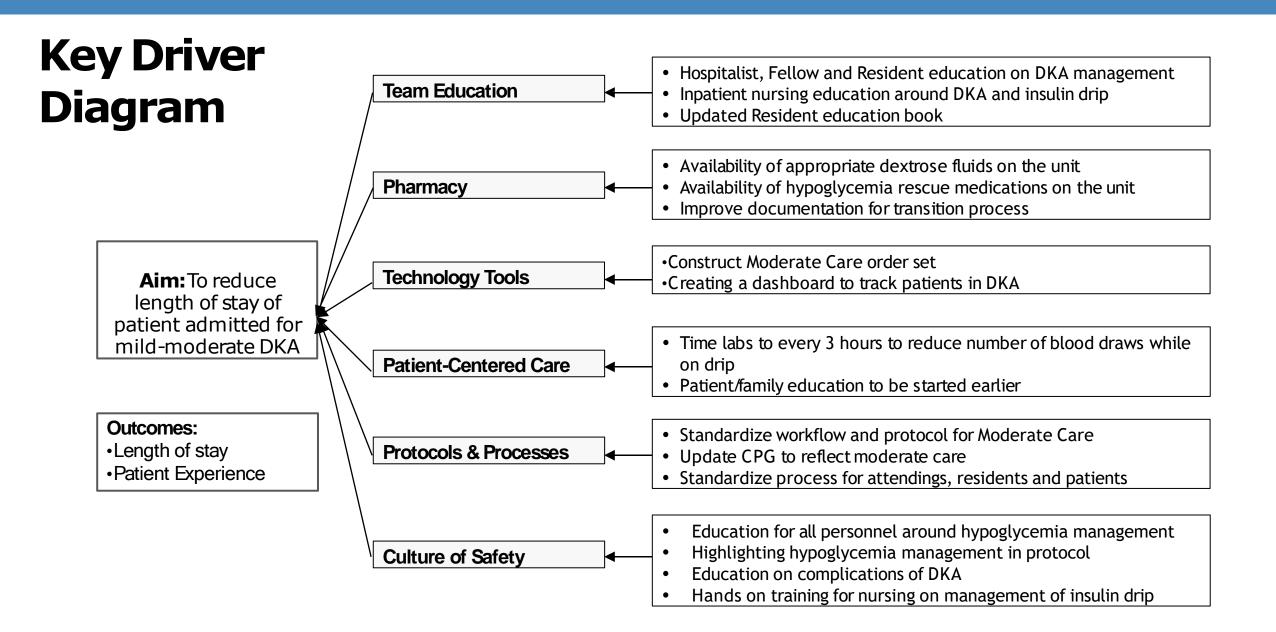
- Pediatric DKA has been managed at our tertiary care center with an insulin drip and 2-bag system.
- This acute and intensive condition has been managed in either the emergency department (ED) or pediatric intensive care unit (PICU).
- Limitations of general pediatrics beds have resulted in longer wait times in the ED and PICU, and delays in starting education for families of newly diagnosed patients with diabetes, and thus longer hospitalization times.

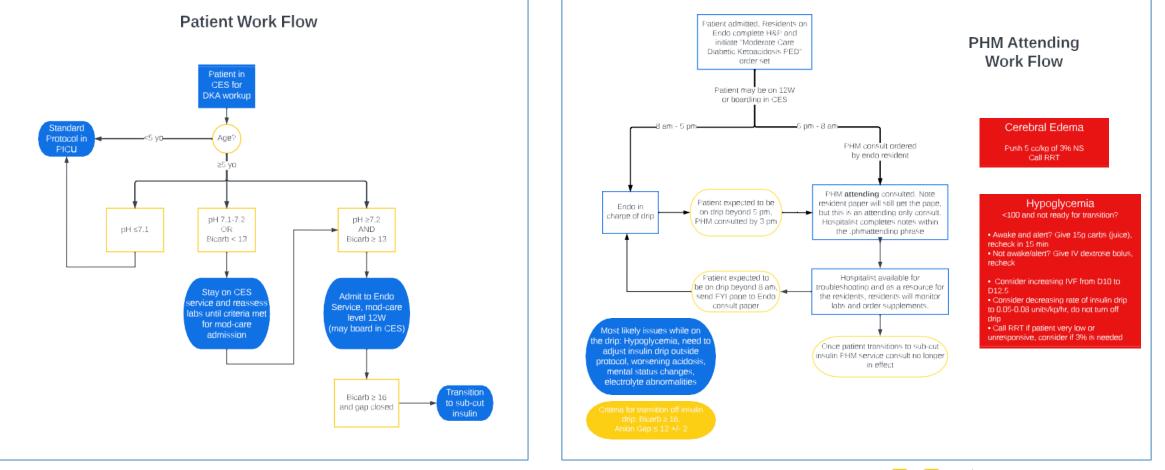
Objective

 To establish a moderate care unit on the general pediatrics floor to care for patients with mildmoderate DKA on an insulin drip with 2-bag fluid delivery method.

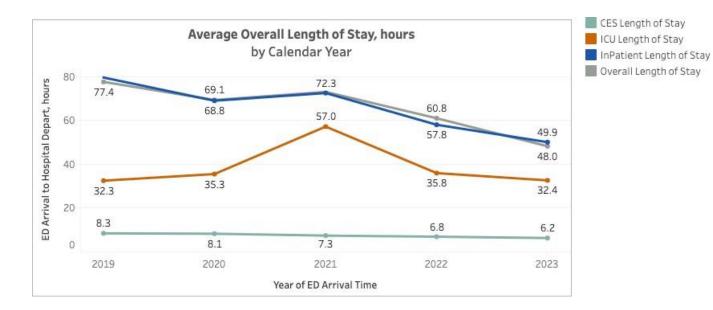
Hypothesis

 This shift in our care model will shorten length-ofstay in the hospital.




Methods

- Mild-moderate DKA: pH on VBG \geq 7.2 and a serum bicarbonate of \geq 13.
- We included children \geq 5 years old.
- QI methods:
 - Created Key Driver Diagram
 - Mapped processes for patients and physicians and developed care protocols
 - Designed educational materials for all care providers involved


Process Maps

Results

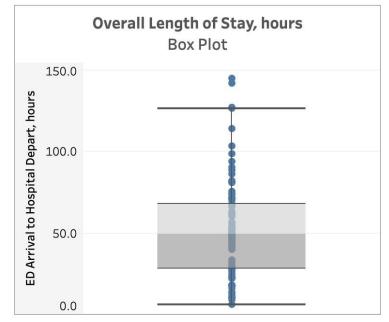


Fig 1. Year to year comparison of LOS by admission location

Compared to patients treated in the last year, there was a decrease in LOS following pilot of moderate care protocol

Avg. Overall LOS, hours

Fig 2. LOS May 1, 2022–June 30, 2023 compared to prior year

Overall hospital LOS reduced by 30% compared to the prior year

Conclusions

- Mild to moderate DKA can be successfully cared for in a moderate care setting.
- Our initiative shortened length of stay for hospitalized patients who present in DKA.

Acknowledgements & Contact

The authors thank the Pediatric Endocrinology, Pediatric Emergency Medicine, and Pediatric Hospital Medicine teams for their collaboration on this project.

For more information, please contact Dr. Nellie Hani at <u>nelliesa@med.umich.edu.</u>

